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INTéODUCTION

In Refs. [1,2,3] the authors have presented a "moving singular-element’
procedure for the dynamic analysis of fast crack-propagation in finite bodies.
In this procedure, a singular-element, within which a large number of analyt-
ical eigen-functions corresponding to a steadily propagating crack are used
as basis functions for displacements, may move by an arbitrary amount AL in
each time-increment At of the numerical time-integration procedure. The moving
singular element, within which the crack~tip always has a fixed location, re-
tains its shape at all times, but the mesh of "regular" (isoparametric) finite
elements, surrounding the moving singular element, deforms accordingly. An
energy-consistent variational statement was developed in [1,2] as a basis for

the above '

'moving singularity-element'" method of fast fracture analysis. It
has been demonstrated in [1,2] that the above procedure leads to a direct eval-
uation of the dynamic K-factor (s), in as much as they are unknown parameters
in the assumed basis functions for the singular-element.

Solutions to a variety of problems, were obtained by using the above pro-
cedure and were discussed in detail in (1,3]. These problems included, among
others: (%)constant-velocity, self-similar propagation of a finite central
crack in a finite panel [analogous to the well-known Broberg's problem] (Z%)
stress-wave loading of a stationary central crack in a finite panel [analogous
to the well-known problems of Baker; Sih et al; and Thau et al}, (¢71) comstant-
velocity propagation of a central crack in a panel, wherein, the propagation
starts at a finite time after stress-waves from the loaded edge reach the crack,
and (Iv) constant velocity propagation of an edge-crack in a finite panel, whose
edscs parallel to the crack are subjected to prescribed, time-independent, dis-

placements in a direction normal to the crack-axis analogous to the well-known
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problems of Nilsson {4]. In Ref. [5], the results of numerical simulation
of experimentally measured crack-tip versus time history in a rectangular-
doublo-cantilever-beam (RDCB), as reported by Kalthoff et al [6], were re-
ported. Also, in Ref. [5], the authors' results for the computed dynamic K-
factor for RDCB were compared with the experimental (caustics) results of
[6], and the independent numerical results of Kobayashi, [7] who uses a node-
release technique in fast fracture simulation.

In this paper, the authors wish first to clarify and comment upon sev-
eral aspects of the model formulation which appear in their Refs. [1,2].
Second, the model's accuracy and efficiency are evaluated in terms of less
sophisticated models. Finally, the practicality of the special singular
element for predicting crack growth for a given crack growth criterion is
illustrated. In addressing the second topic, attention is focused on: (Z)
the effect of using only the stationary-eigen functions (or the well-known
Williams' solution) in the moving singular-element for dynamic crack propagation,
and () the use of isoparametric elements with mid-side nodes shifted so as
to viceld the appropriate (r—%) singularity |8,9]. Finally, some recent results
are presented which illustrate the facility of the propagation-eigen-function

singular element for predicting crack propagation behavior based on K

ID
versus crack propagation speed as a crack growth criterion.
The Variational Principle
Since the details of the formulation are presented in Refs. [1,2], only

those portions of the formulation necessarv to the present discussion will

be includel heres Further, for simplicity the rather gpeneral equations of
Ret oo [1,0] will be spocialiced to the case of Mode I erack growth in bodices
sucect to o traction free crack surtfaces, cero hodv toree and with gcomctry/
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appfied loading such that the model can make use of symmetry about the crack

-

plane. 1In Ref. [2], the principal of virtu ! work proposed as the governing
equation for crack propagation during the period [tl,tzl in which the crack

elongates by amount AZ is given as:

= 2 .1 2 L2 .12
Y -j‘; {(oij+oij)6€ij + O(ui+u1)5ui} av
2

- (TL47%) sulds - f ot vlsuZds. (1)
s i i iy 13301
%
The superscripts 1 and 2 refer to quantities at times t, and t_ respectively.

1 2

The integrals 1in order of appearance refer to the volume of the body at time

ty the portion of the surface of the body at time t,

tractions and the new crack surface created between times tl and tz. Note

that the variational quantities ée% and Guz reflect the kinematic comstraint

ij i

2 and therefore are arbitrary on AL. Making use of the small strain dis-

subjected to prescribed

at t
placement relation, the symmetry of cij,and using the divergence theorem, the

first term of the volume integral in (1) becomes:

2
f (o2 4ot )6c. v = f (02 V2ot whysulas f (o2, 4ot )sulav
S S A S 10 & w133 i3 v, 43,313,374
2 2 2

(2)

where 3V, is the boundary of V (resulting

2 Noting that (£) AL is part of 3V

2° 2

in the last term of (1) dropping out), (ZZ) that Sa is a part of 3V2 and (Z<1)
2
that 5u§ is zero on any portion of avz that has prescribed displacements, we have:
f !u?. .-pii?w}, -DU].'}Sung
ij,3 i 13,3 i i
v
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Since 3uT is arbitrary (3) leads to:
i

2 ..2 . 1

oij,j = puy + pui - Uij,j in V2 (4a)
7 9 -9 -

.., =T; + T} - o}.v} on S (4b)
ij i i i ij 3 9,
7

and o..v. =0 on AT (4c)

1] J

It is seen that (4c) is nothing other than the condition that the new
crack surface be traction free. Equation (4b) stipulates that traction

boundary conditions be satisfied on S, and (4a) is a statement of dynamic

2
equilibrium within the body. If one assumes that oij onﬁi then (4a) reduces

to the usual equilibrium equation at t, (ie, c?. .=pﬁ%). Then since og. .=pﬁg
2 ij,] i ij,j i

it follows that the state at t3 must also satisfy the usual equilibrium equa-~

tion and so forth. Therefore, (4a) is equivalent to the standard expression
. Sy . 1 _ .1, . o
for dynamic equilibrium when the assumption that 9y .=pu; 1is valid. A similar
b
argument leads to (4b) reducing to the usual condition for satisfaction of trac-
tion boundary conditions.
In the finite element model formulation, the above assunption is not

valid and therefore, the equations (4) do not reduce to those usually found in

- ) . 1, .1 . R .
finite element model derivations. One reason for oij#oui is that in modeling
crack growth, it becomes necessary in the procedure of Refs. [1,2] to change the mesh
confisuration at each crack growth time step and to interpolate displacement,

velocity and acceleration data at the new node locations. This interpolation

will in general result in some discequilibrium in the interpolated solution.

- . Sy s .11
Tf, Yor ecxample, we assume some disequilibrium at £ such that pu,-o,, . =f,
1 1 13,)
. - - "” 2
then satistaction of (4a) leads to uu,—a,j i=—r. Clearly, the discquilibrium
L 1], ’
at cubsequent steps will be the same form (f) with the sign alternating at

cacn sten. Theretore, it would appear that the tormulation of Ref. [1,2] should

result oin oscillation:,

e
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" Numerical experimentation with the formulation has indeed shown this
‘oscillation to occur. However, when used with the special singular element
of Refs. [1,2] the only time it has occured at discernable levels is in
static analyses. In dynamic analyses, it has been found that the inertial
forces are generally large enough to make the oscillatory forces negligible.

Similar oscillation has been observed when implementing the proposed
principle of virtual work with eight-noded isoparametric elements. (Wherein
the appropriate crack tip singularity was obtained by shifting midside nodes
as suggested by Ref. [8,9]). It is generally found that the oscillations
when using the isoparametric elements are larger than those observed with the
special singular element. This is believed to be the result of inherently
larger interpolation induced disequilibrium with these less sophisticated
elements. ‘

A related variational principle for quasi-static crack growth in elastic-
plastic bodies was also presented in [l]. To account for effects of history
dependent plasticity and finite deformation gradients, an updated Lagrangean
rate formulation was used. As a result of the formulation yielding an in-
cremental analysis (as opposed to the computation of total state quantitites
as in the elasto-dynamic analysis above), the effect of state quantities at
cl appearing in the finite element equations for the solution at t2 is funda-
mentally different. The variational statement, simplified for the case of
zero body force, traction free crack surfaces and symmetrical modeling of Mode

I crack growth, is given as:

f [r .l.o,éQ_ +S Sg'“ ]dv - T Su dS + r,l,vﬁs&_ dr =0 (5)
, ij ’ij iy °ij i i « Lji i i
‘l S1 AL
3
2l

wnere "1 arce the Cauchy stress components of the solution at t, in the

1




current reference configuration (¢,,V, ,% ), ﬁi are the incremental displace-

el

ments in voing from the reterence state to the final stace (LZ,VZ,Zl+tH)

= . . ; .Q _. . L . .
> Y] o : S = . . su, L tu,
Ti arce the applied incremental tractions, gij lK,luK,J’ giJ ul’J uJ"L and

Si' are the incremental second Piola-Kirchhoff stress components (or what are also
known as Truesdell stress increments), Equation (5), through the use of the di-

verzence theorem, leads to the following Euler-Lagrange equations:

1. . B
+ = in V
(Tkjui,k)’j + 13, Fi 0 in 1 (6a)
1. =
<+ - =
(Tkjui,k ij)vj Ti 0 on SUl (6b)
a. +5. +tiyvi =0 on as (6c)

T]"A . ..
(ki i,k i 1]

[

Equation (6a) is the usual translational equilibrium condition associated

with updated-Lagrangean formulations in terms of the second Piola-Kirchhoff
stress and does not contain any additional terms such as found in equation
(4a). Equation (6b) is the usual condition for satisfaction of traction
boundarv conditions and equation (6c) is the condition that the newly created
crack surface be traction free. Further study of the derivation of equations
(5) and (6) shows that there is nothing inherent in the formulation to account
for (or correct) the error from interpolation of quantities from the finite
element mesh at tl with crack length :l to the finite clement mesh at tl with

crack leauth £l+KE. However, the accumulated error at increment P (EP) can

be measured by:

o p R.‘L , =P .
LP _[;,P ri].bL,ijd\: j:l’ I'.L.\u,LdS

wiricn Is5 a check on the equilibrium ac increment p.  Since this rate formulation
doew ot result in terms which lead to oscillation of the solution it seems
that foralation of the linear-clastic dvnamic problem in terms of an in-

crecental nodel Gimilar to that vor the clastic-plastic large deformation problem

R




woula eliminate the trouble with oscillations while at the same time retain
Lhe crack growth modeling features.

Results of analyses which are presented later in this paper are largely
based on the formulation as originally proposed in Ref. [1,2] since it ap-
pears that no significant change would result from a reformulation. The one
exception to this are the results obtained through the use of isoparametric
elements with midside nodes shifted so as give a singularity at the crack tip.

In those analyses, the usual statement of virtual work is applied:

0= {o?.as? +oizsullav - [ T26u? ds
v ij 1] i1 i i
2 so
Traction free crack surfaces are app%oximated by letting nodal forces on the

crack surfaces be zero.

Singular Element for Dynamic Crack Propagation

A singular crack tip element was also developed in [1,2] and used in con-
junction with the formulation (2) for the analysis of Mode 1 dynamic crack
propagation in linear elastic two dimensional bodies. This singular element
uses an arbitrary number of the displacement eigen-functions which come from
the solution of a crack in an infinite body. For dynamic crack propagation,
these eigen-functions are taken as those for the corresponding steady-state
dynamically propagating crack in an infinite body. Equations (7) give the
form for the assumed displacement, velocity and acceleration within the sin-

gular clement:

(5, %08) = UCE,x,,v) 8(E) (7a)
0° = U - v, 8 (7b)
.5 . 2

U= e = 2vU) e 3+ v (U),8 (7¢)

[

where U Qs the matrix of eigen-rfunctions (plus appropriate rigid bodyv




modes), 3 is the vector of undetermined coefficients, v is the crack propa-
gation speed and (ilxz) are the coordinates relative to the moving crack tip
(5=xl-vt). It should be noted that (7b) and (7c¢) are obtained form (7a)

throuzh differentiation with respect to time with the assumption that v is not

a function of time. The following comments should remove any incorrect notions

that this in any way limits the use of the element to constant speed crack
propasation. First, it has been shown [12] that the near-tip fields are

the same for steadv-state and transient crack propagation. Therefore, provided
v at each time step reflects the current speed, there is no question that the
eigen-functions for the element are correct and that the coefficient of the
singular eigen-function (Bl) is indeed the Mode I stress intensity factor. A
second consideration is that the associated stress eigen—-functions do not

satisiy the stress equilibrium~equation for non-steady-state (as viewed by an

observer moving i}h the crack-tip). )
B“ui 39 ug 2 3 u,
.= -2v + v

ij,] ~":2 2 A5t 352

o (8)

Q
l

but instead, satisfy the corresponding steady equation:

g.. . T v 21 (9)

While it would be preierred that equation (8) be satisfied exactly, the dis-
placement finite element method does not require this. The stress equilibrium
of (3) is satistied in the usual approximate sense associated with the finite

element method.

One conon Jitticulty vhich arises when using wmore than one celement type
in a model is the Lack ol compatibility at the interface of the dissimilar ele-
ment . I lers (L] 0 method Do oexplained for maintaining compatibility at
the Howndarics oi the dincular olement rhich are shared Sy cioht-noded isopara-

ik




metric elements. This method involves selecting £ such that the following

three ervor functionals are minimized:

s R.2 _ s .R.2 s -R.2
Il =f (L~x -u) "dp; 12 = f (\;l -u ) Tdps 13 —f (u”-u")"dpP (10)
pS P

s Pg

S .5 ..S . R .R.R . -
where u ,u ,u” are as in equations (7), u ,d i are displacements, velocities,

and accelerations at the boundary of the eight-noded isoparametric elements,

and s is the boundary of the singular element shared by isoparametric elemgnts.
This procedure gives Bs é and é in terms of 4gs és and §s’ the nodal displacements,
velocities and accelerations of nodes on the bou.dary shared by the singular

element and the isoparametric elements. 1In particular, 8is related to 4 by

§=

H>

11
9 (11)
where A is in general, a rectangular MxN matrix (M being the dimension of @
and N the dimension of qs). The exact form of A does not enter the present

discussion but can be found in [1,2]. The question to be addressed here
concerns the con;traints which must be placed on the dimension of 5 (and there-
fore3). It is well known that in hybrid finite elements there is a restriction
on the number of internal parameters (@) so that the matrix equations relating
these parameters to the unknowns of the final finite element equations are non-
singular [11}. It should be noted that the current procedure is not (strictly
speaking) a hybrid procedure and therefore the matrix 2 relating 8 to 9 does
not pose the same problem. However, the following does show there is a res-
triction on the dimension of 3. In the derivation of [1,2] there are nine nodal
points and therefore eighteen degrees of freedom associated with the singular

element.  All of these are on its boundary (denoted o in (10)) as illustratoed
s

in the typical mesh or Figure 1, To ascertain the behavior of the singular

clement with differing numbers of cigen-tunctions (ie, differing dimensions




for ) the eiven-values and cipen-modes of the singular element for zero
craci apeed were calealated,  Im making the caleulations, the symmetry plane
nodal Jdisplacement normal to the crack plane was constrained since no eigen-
functions were included for rigid body translation normal to the crack plane.
Based on the deletion of this one degree of freedom it can be seen that the
singuliar clement must have seventeen deformation modes (eigen vectors) and
should have onlv one zero energy mode (eigen value of zero), corresponding

to a rizid body translation. In varying the dimension of 3 (call it M) it
was found that for M = 17, there was one zero eigenvalue which through ex~
amination of the vigenvector did indeed correspond to the desired rigid body
translation parallel to the crack plane. When cases for M <17 were considered,
the ausmber of these zoero energy modes (P) was P o= 18-M,(M<17). These excess
zero enerav modes are clearly undesirable, It was also observed that the
desired rigid bodv mode was no longer present when these extra modes occured.
The constraint on M for the current configuration is therefore ¥ > 17. In

the jeneral 2D case where N is the number of unconstrained nodal degrees of

freedon associated with the singular element we must have M > N, where M in-
cludes the appropriate number of special rigid bodv displacement functions.
1f we denote the number of these rigid body functions by R, then the required
number of crack solution eigen-functions (C) is given by C > N-R which is
exactly that constraint foun’ for the number of assumed element stress func-
tioas in hvbrid stress finite element models [11]. 0 The resules presented in
{1,3,5]) and to be presented here have used M=20 rheretove satistving the above
constraint.,

Procedures tor Ginulation of Creack croweh

Taoeomodeling of crack oropacation with oither the special sinoular elenent

- 10 -




or with the singular isoparametric elements requires the finite element

ﬁesh in the region of the crack tip to be modiried at each time step for

which crack growth occurs. The procedure used here (and in [1,3,5] is to

shift the singular element (s) without distortion, (as shown in Figure 2) so
that it is only the regular elements surrounding the special modeling region
which become distorted. .An important point which differentiates this pro-
cedure from the more common node release techniques for crack growth is that
the size of the increment of crack growth (AL) is not restricted by nodal
spacing but rather can be made as small as desired. Figure 2 also illustrates
that the distortion of elements periodically reaches a critical degree at which
time the crack tip region of the model is remeshed before applying the shifting
proceduref Since this procedure involves the shifting of nodal points and
since the nodal quantities of displacement, velocity and acceleration at each
time step appear in the difference equations associated with the Newmark time
integration scheme for the solution at the subsequent time step, it is neces-
sary to use interpolation procedures to obtain correct values for the shifted
nodes.

Considerations of Efficiency and Accuracy

In the previous sections; the discussion was largely in terms of partic-
ular features of the variational principle or singular element derivation.
Here the discussion will be of a broader nature with most of the attention
being focused on the more general attributes of efficiency and accuracy.

The singular element with crack propagation speed dependent eigen-func-
tions has several attractive features which stem divectly from the use of the
analvtical solution for the near-crack-tip field. First, the traction free

crack surface conditions are satistfied exactly. Second,the coerficicnt of the




sincular cigen-function i{s the Mode I stress inteansity factor and is obtained
dircctly without recourse to indirect energy based procedures or extrapolation
methods. Third, because many eigen-functions are used, the accuracy of the
solution is less sensitive to the sinpular clement size than for elements with
less elesant basis functions.

As might be expected, this element also has some features which tend to
offser the above positive ones. One such feature is that the propagation-
eiren-functions lead to a non-symmetric stiffness matrix. However, since the
noa-symmetry is localized to rows and columns corresponding to ag» the ad-
ditional effort in solving the equations is not excessive. Another aspect of

usine special elements which requires attention is the inherent incompatibility

re,

of displicement with neighboring elements. The procedure proposed in [1,2]
and used here involves satisfying compatibility along O in an.integrated least
square sense as shown in equation (10).

In order to weigh the above positive features against the negative, two
alternative models are considered., The first alternative is to use a similar
special singular element but to substitute stationary crack eigen-functions
for the propagating crack eigen-functions, This substitution has two effects.
First, the stiffness matrix becomes symmetric. Second, the coefficient of the

singular eigen-function can no longer be interpreted as KI, the Mode T stress

intensity factor. At first, this loss seems a dear price to pay since it would

appear that one must resort to indirect procedures for determining KI such

as encersy calculations or the fittine of propagation-eigen~functions to the

near field solutionl  Howvever, KI can be olitained dirvectly from the stationarv-

eiqen-tfunction element solution asing a simple formula described later. Witn

i question of ealcalating K answered, it remains to be seen how well the

[

chosen number of stationary functions (twentv) can accomodate the distored

cdh




near‘field displacement patterns of a propagating crack.

It is clear that whether one uses stationary-eigen~-functions or propagation-
eigen-functions, the special element will still require additional work to
ensure compatibility with neighboring elements. To ascertain the benefits of
eliminating this additional work, a third model is considered. This model, as
mentioned previously, uses eight-noded isoparametric elements exclusively.
The r-';‘z singularity in stress and strain is incorporated in the model by shifting
midside nodes on element edges joining the crack tip node to the quarter-point
of the element side as illustrated in Figure 1. To ensure the correct behavior
in all angular directions from the crack tip, the elements adjoining the crack
were degenerated to the triangular form seen in Figure 1. While this model
has no problem in terms of compatibility, it does have a problem in terms of
calculation of KI' One has virtually no choice but to resort to energy methods,
fitting of eigen-functions or extrapolation procedures. Since a major consider-
ation in comparing the above models is the accuracy and ease of computing KI'

the indirect procedures for computing K_ with the stationary eigen-function

I

model and quarter-point isoparametric element model will be described.

Indirect Methods for Computing K

1

As pointed out previously, when the propagation-eigen-function singular

element is used, K_ is evaluated directly during the solution procedure and

I

therefore indirect methods for evaluation KI are not required. However, that
does not mean that these methods can not be used and in fact the comparison
of KI from alternate procedures is a pood manner for checking the consistency
of the solution.

The rirst two indircct procedures rely on the well known relationship

between K[ and the tfracture cnergy release rate (G) for pure Mode [ fracture:




(12)

~ 2 2.2
where f(xd,as) = ad(l—us)/[éada (l+us) |

t

(@]

or

s
2 2 2 2
ay = 1 - (V/Cd) ;oo 1 (v/CS)
C2 = u/p
s
2 _2u 1-v .
Cd = (l—2v) for plane strain
2
d

blg’ o‘

1 ~
(l—v) for plane stress

In the above, V is the crack propagation speed, u the shear modulus, v the

possons ratio, ¢ the mass density, Cs the shear wave speed and Cd the dila-

tational wave speed. For the limiting case as v goes to zero, we have

£(1,1) 1-v for plane strain

1
1o for planc stress (1)

or £(1,1)
To make use of (12), one must evaluate G. This has been done in the present
work using three different approaches. The first approach to determining

G is throuch an vnergy balance. This is done in crack propagation analysis

4

most ecasily by considering the cnergy of the system at two adjacent time steps

t, and t_ between which an increment in crack length 4L has occured (AI=IG~31).
s “

It we define the increment in work done on the system by the applied traction
and displacenent boundary conditions as AW = WZ—Nl and similarly denote the
chanse In strain energy by AU and the chanee in kinetic energy by AT then an
average G for the interval (tl.tz) is given by:

AT

bl (14)

o

where bt the lensth ot the propacating crack front.
The second approach to computine ¢ is to use a crack closure inteaxral,

i caleualarion involves the tractions on 5 existin at tl. For pure Mode 1§




fracture behavior one has only displacement component uy and traction com-

ponent Ty present at AL. An average G for the interval tl’ tz is given by:
G = -1 T (x,t. )u (x,t, )dx (15)
AT y 1y 2

AL
where uy is halt the total crack opening due to the use of symmetry in the
model. The factor of % usually observed in linear elastic work evaluations
is canceled by a factor of 2 which accounts for the use of symmetry in the
model.
The third method for evaluating G is the J-integral. It is well known
that G=J for elastic bodies and therefore is obtained from the definition

of J in the current symmetrical dynamic analysis of a Mode I crack [10]:

Jdu, du,
J=2 oti, —L dA +] (wn -T, = ) ds (16)
L Ix x j ox

where 5 is the mass density, W is the strain energy density, I' is a curve
connecting the upper crack surface to the symmetry plane ahead of the crack
(which is propagating in the x coordinate direction), A is the two-dimensional
rezion enclosed by T, n is the x-component of the outward unit normal to T
and Tj is the traction vector acting on T (outward positive). The factor of

2 again reflects “he use of symmetry in modeling.

In addition to the above enerpy related procedures, two additional methods
are used here for determining KI' The rirst of these two involves the fitting
of near ficld displacements with the propasation-vigen-{unctions discussed
previously.  This method is quite gencral in nature and can be used with either

the special stationary-eigen-function clement or with the quarter-point singular

clements. The procedure is to wse cquations (10) to obtain an equation of the
for.vol1) such that the coerficient ot the singular propavation-cigen~function
-1, -

el 4




3.(3

1 1=K[) can be related to the near ficld nodal displacements q .

~S

The final procedure for obtaining K. is primarily applicable to the

1

stationary-eigen~function element and results in the evaluation of KI from

this element being nearly as direct as when using the propagation-eigen-

. P . . .
function element. Let Bl be the undetermined coefficient of the singular
. . . P_ S . ..
propagation-eigen-function (Bl=kI). Let 31 be the corresponding coefficient
of the stationary-eigen~-functions, noting Si = Bi = KI only if v, the crack

proragation speed, is zero. Using the definition of G for Mode 1 fracture:

AT
AL, . ~1
G - limit i fT (x) u (x-AI) dx (17)
AZ>0 0’ y

it is possible to obtain two equivalent definitions of G in terms of Bi or

ai by substitution of the respective singular eigen-functions into (17):

fla,,a )
A d’’s p.2 A £(1,1) ,.S.2
G = 5 (8,)7 and G ~ TR (81) (18)

From (18) 1t is then seen that Bi which is always equal to KI can be

S
related to Sl by:

K =3 =

(19)

where £(1,1) and f(ud,aq) are as defined in the text immediately following
equation(12).

Crack Propagation Computations for Comparison of Models

The primary purpose of these computations is to compare results using

several levels of modeling sophistication,  To keep the problem from ob-

scuring the basic differences in modeling techniques, a rather simple com-
Dination of veometry and loading wasn selected.  The problem which was
cons Llered previoasTy fn det, {3 thae of the constant velocity pron-
Aation o cdoe crack in g osquare sheet whose vdges

- 16 -




parallel to the direction of crack propasation are subjected to uniform
displacements u, in the direction normal to that of crack propagation.

The dimensions and mesh confipuration are depicted in Figure 1. This prob-
len is analogous to that treated by Nilsson [4] who obtained an analytical
solution for steady-state stress-intensity factor for the constant velocity
propagation of a semi-infinite crack in a finite-height, infinite-width

strip. In the following, the material properties are v=0.286, u=2.94 x lOaN/mm2
and 5=2.45 x 10—6kg/mm3. Three levels of constant crack velocity propagation,
(v/CS)=0.2,O.4,0.6 are considered. In each case, the initial crack length,
(Zo/w) is 0.2. For each case, the crack growth increment size is maintained
constant (as opposed to time step size) at a value of AI/W=0.005 which cor-
responds to 2.5 percent of the singular element's dimension in the crack prop-
agation direction.

In these analyses the uniform prescribed displacement is applied sta-
tically at t=0 sec. While maintaining this prescribed displacement, the crack
is then made to propagate at a uniform speed. This procedure results in crack
acceleration over the first time step and since the time step size is varied
so as to maintain the crack growth increment size constant, this acceleration
will also differ for each value of the uniform crack speed.

!:QLQQS The computatad KI(t) for rthis lowest considered propagation
specd are illustrated in Figure 3. Note that the computed KI(t) are normalized
with respect to K:, which is the static KI for the infinite width strip problem of
Nilsson (where K:=(G?E)/Vﬂ(l—u2) and are plotted as a function of nondimensional
cracic lensth (5/W).  In cach of Figures 3,4 and 5 the arrows indicate the
crack lenithy at which the remeshing procedure (illustvated in Figure 2) takes

place. The dashed Lines of Figures 3, 4 and 35 indicate the steadv-state value




()

of KI for the infinite strip problem due to Nilsson [4]. The nearness to
unitv of the dashed line of Figure 3 indicates the relatively low velocity
dependence of the strip solutiom at this crack speed.

The solid curve of Figeure 3 represents the values of KI from the prop-
agation-eigen-function element and as discussed previously are detcrmined
directly as the coefficient of the singular eigen-function during the solution.
The solid peoints of Figure 3 are the results from the stationary-eigen-function
element. To illustrate the small effect of crack speed at v=0.2Cs, the plotted
valuos are just the coefficient of the singular eigen-function but because of

the non-zero crack speed are not strictly speaking values of K To obtain

I
correct values of KI in this case, one would have to use equation (19). Since
this correction would uniformly lower all these points by only 1.47%, these
corrected values are not plotted. It can be seen, however, that this correction
would indeed tend to improve the already excellent agreement with the propa-
gat ion-vigen-function element.

The open sympols of Figure 3 are the results of the quarter-point isopara-
metric element computations. The open circular points are based on a G obtained

through a global energy balance (14) which is then converted to K_ through

I
equation (12). 1t can be scen that except for the first four time steps, these
points asree quite well with the propagation-cigen~function element solution.

The open triansular points are based on a G obtained through the crack closure

intesral of equation (15) and then converted to Kl through equation (12). Tt is

18 -
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clecr from Figure 3 that the crack closure integral procedure is inferior

to the energy balance procedure when used with the isoparametric elements.

This is attributed to the inherent inaccuracy of the boundary tractions

for the isoparametric element which are required when using equation (15).It
should be noted that a very satisfactory aspect of the crack growth modeling
procedure used here is that none of the curves in Figure 3 show erratic be-
havior which can be related to the remeshing procedure. From Figure 3, it
seems that any one of the three models is adequate for the problem when v=0.2Cs.

v=0.~’+CS The results for this intermediate case are given in Figure 4.
Again, the dashed curve represents the steady-state infinite strip solution.
To illustrate the increasing effect of the crack speed on the crack tip field,
the solid points are again the coefficient of the singular term of the sta-
tionary-eigen~-function solution and must be modified via equation 19 before
being interpretable as KI. The solid square points are these modified values.
It can be seen that the agreement between the propagation-eigen~function
solution and the stationary eigen-function solution is still quite good despite
the increased effect of crack speed on the crack tip field.

The quarter-point isoparametric element results are indicated by open
circular points. Here again, the global energy balance procedure has been
used. Unlike the results for v=0.2CS, there is a pronounced difference be-
tween the isoparametric element results and the special element results. It

is believed that this differcnce is largely due to the inadequacy of the four

-~ elements used here to model the increasingly contorted displacement and stress
lv.
> ficlds which occur with increasing crack speed.  An increase in the number of

triangular elements in the angular dircction might be expected to remedy this

) deficicney.  The inadequacy of the element refinement is further evidencod




by the noticeable disturbance in the KI values accompanying each remeshing.
v=0.6C The results for this largest considered crack speed are presented
—_—

in Figure 5. Here again the dashed line is the steady-state infinite strip

solution and the solid curve the propagation-eigen-function solution. The

solid square points are the K_ values from the stationary-eigen-function ele-

I
. . s . . . .
ment solution, and are obtained from the Bl (solid circular points) using
equation 19. The solid triangular points are also K_ values from the sta-

I

tionary-eigen-function solution but were obtained through fitting the near
ficld nodal displacements (gs) with the propagation-eigen~functions using
the method described previously. Nineteen eigen-functions plus the one rigid
body mode were used in this fitting procedure. Both of the above procedures
for treating the stationary-eigen-function-solution yield results which agree
quite well with the propagation-eigen-function-solution but clearly the one
represented by equation 19 is preferred due to the ease of application.

The results from the quarter-point isoparametric elements are plotted
in Figure 5 using open circular points. Unlike the results presented at

v=0.~'+CS and v=0.2Cs, the values of K. plotted here were obtained through the

I
J-integral as defined by (16). Though the results based on the global energy
balance procedure are not presented here, they were found to agree quite

well with those using the J~integral except that there was substantially more

"noise'". This "noise" became particularly apparent at positions where remeshing

was required.

From these caleulations involving crack propacation speed ranging from
0.1U% to u.GC. it appears that tor these crack-spoecd ranges the propaation-
clgen-runction olement has o signiticant advantases over the stationarv=cizen-
Dmetion clement cither o tere . o1 qecnracy ot in terms of case ol conputing
K[, other than beins: more theorcticallyv consistent and appealins.  Since there
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~is additional cffort in dealing with the non-symmetric matrices which accompany
the propagation-eigen~function formulation, it seems the stationary-eigen-func-
tion elemuent might be more effectively implemented to obtain results within

a tolerable enginearing accuracy. The large number of eigen-functions used in
these special elenent formulations in order to produce no spurious kinematic de-
formation modes is believed to be the reason for the high degree of accuracy
attained with the stationary-eigen~function element in the analysis of fast
crack propagation. It was observed that the use of four quarter-point iso-
parametric elements was quite adequate at v=0.2Cs, but that by v=0.loCS the
accuracy had become marginal (5-107 difference from special element results).

In considering the effect of crack speed on the isoparametric element solution
accuracy, it should be kept in mind that experimentally measured crack speeds
often fall below O.JCS. If one needs to consider higher speeds, mesh refinement
seems to be necessary.

Application to Prediction of Crack Growth

In the computations of [1,3,5] and in those of the previous section, the
loading of the body and the crack growth history are used as input to the

analysis. The output of each of these "generation phase” computations is KI

as a function of time, crack length or crack speed. The subject of this sece-
tion are computations of a reversc nature. That is, the input to the computation

is the loading of the body and a crack growth history. This type of analysis

is referred to as an "application phase'" computation.

Onc feature of the special ~igen-function elements which has proved to

be quite useful in the application type analysis is thar in addition to K
: 2
GRI 1K

being computed directly from g one also has —Ig-und —5 as a result of the
~8 2
at

I

minimization ot the error functionals of equation (10).
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Having these quantities at some time, say t=t simplifies the prediction of

l’
crack velocity for the subsequent time step since the value of KI can extrap-

olated using a Taylor series expansion. More precisely, in order to determine

AZ=32—21 using a crack growth criterion based on KI' one needs to have an

averagse K_ for the iaterval (t

I 1,t2). For the propagation-eigen-function

element, this average K_ is predicted in terms of quantities at tl by:

I
€= 8Py + 88 ey + L0 o (21)
Ip 171 2 1'71 8 11
. 9K 0 32KI
3P i BP = L . . , . .
where Dl 757 and 1 — Having kIp one uses the criterion to obtain v

ot
which is then used to obtain AL = vAt. Having AL the finite element mesh

for the crack length I, can be generated and the solution at t, obtained. It

2 2

should be noted that a similar prediction procedure to (21) exists for the
stationary eigen-function element. Through the differentiation of (19) with

respect to time one can obtain:

2
) (L s At 'S )? s
Kip = v ECag,a) Bi(e)) + 5 B (e +-=g— B8(t) (22)

An application phase calculation for a double cantilever beam specimen,
identical to specimen No. & of Ralthoff, et al [6], has been completed using

the KID versus  relation shown in Figurce 6 as a crack growth criterion. This

curve and the crack initiation fracture toughness for the computation (K =

1Q
-3/2

2.32 MAm ) are identical to the ones used by Kobayashi [7]. The predicted

KI o3 tl,X vs t and ¥ (or v) vs t which were obtained using the propagation-
cigen-function element are shown in Figure 7 along with the corresponding
cxperimental results of Kalthoff, et al [6] and numerical results of Kobayashi

2
{7]. The present plune stress analvsis used E=3380MN/m”, v=0.33 andc=ll72kg/m3.

[t can be seen in Figure 7 that the © vs t results are virtually indistin-




guishable from the experimental results and that even the v vs t results agree
quite well. In comparing the KI curves it is seen that there is quite good
agreement for approximately the first half of the total crack growth. At

about midwvay, however, the computed K_ increcases briefly while the experimental

I
values drop. Before arrest occurs, there is again good agreement, however.

One possible explanation for the above disparity is that the Araldite
B used by Kalthoff shows some rate dependence even though it was selected
over similar materials because of its relatively low rate dependence [6].
For example, the dynamic elastic constants quoted in [6] are E=3660 and v=0.39,
whereas the static values, used in the analysis, are E=3380 MN/m2 and v=0.33.
While this rate dependence must surely have some effect on the specimens res-
ponse, it has been observed through numerical experiments that other aspects
of the experimental procedure and numerical modeling procedure also have quite
large effects. The results of these sensitivity studies are being presented in
a companion paper [13].
CONCLUSTON

The comparison of the propagation-eigen-function element, the stationary-
eigen-function element, and the quarter-point isoparametric element in terms of
accuracy and efficiency leads to several conclusions. The two eigen~-func-~
tion elements showed similar accuracy at all crack speeds up to 0'6Cs while
the isoparametric element model started showing significant differences be-
tween L).ZCS and O.&C‘;. While the quarter-point isoparametric elements were
the least expeasive to use (2/3 the cost of the stationarv-vizen-functioa
element and - 1/2 that of the propagation-eigen-function clement) their sen-
sitisity Lo crack speed and the need to use indirect amethods to obtain

1

reduce their initial attractivencis.  Furthermore, tor application tvpe




analvses the lack of Ko and KI may complicate the use of isoparametric

I
type elements to the point that thev lose their cost advantage. Another con-
clusion to be drawn from the comparison of the models is that the stationary-
eigen-function element has all the attractive features of the propagation
eigen-function element without the disadvantage of non-symmetric stiffness

matrices. Also, because the matrices are not crack speed dependent, they

do not need to be recomputed each time crack speed changes. Finally, the

eigen-function elements seem particularly attractive for application phase

3K 32K, '
analysis since at each time step one has not ounly KI but also-sz-and 32
t

thus simplifving the prediction of crack behavior in the subsequent time step.

The application phase anlaysis of the double cantilever beam specimen
illustrated the utility of the propagation-eigen~function element for pre-
dicting crack growth behavior using KID versus v as a crack growth criterion.
Since the stationarv-eigen-function element showed very good agreement with
the propagation-~eigen-function element in the gemneration type analyses and
since the predictive logic for application type analyses is the same for both
element tvpes, it seems the stationary-eigen-function element is also well
suited to application computations.

The propagation-eigen-function element, even if more expensive to use than
the other two special elements discussed above, is nevertheless more consistent
and appealing in terms of theoretical formulation, and application to basic
rescarch in dvnamic crack propagation in finite bodies. Due to this reason, ex-
tensive dvnamic {racture studics, of both "generation' and 'application' type,

on laboratory specinmens such as the rectancular double cantilever beam (RDCB)

tapervd double cantilever beam (TDCB), and edee crack specimen, were conducted

by the authors using the presently described propavation-visen-function special,

dnnadibinbiei e, SN S st .. L .l . e e o el wen




element.

These numerical results were compared with available experimental data.
A detailed presentation of these results is made in a companioa paper [13], in
which the effects of specimen geometry, input crack-velocity history, and in-
put dynamic fracture toughness property data, are discussed in detail.
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Finite element mesh for the numerical approximation to the infinite
strip problem of Nilsson [4].

Illustration of the shifting/remeshing procedure for modeling crack
growth.

Nondimensionalized K. vs T for constant velocity crack propagation
(v=0.2Cs) in the model of Figure 1.

Nondimensionalized K. vs I for constant velocity crack propagation
(v=0.4CS) in the model of Figure 1.

Nondimensionalized K. vs I for constant velocity crack propagation
(v=0.6CS) in the model of Figure 1.

K.. vs L used as the crack growth criterion for the application
(propagation) phase calculation of Figure 7.

Application phase analysis of the double cantilever beam specimen
(No. 4) of Kalthoff et al [6].
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